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1. INTRODUCTION

Recently there has been some interest in dependency structures which can be used in reasoning and

problem solving systems. Such dependency structures can be used to make reasoning systems more

incremental during retraction and backtracking and better able to explain their results [Fikes 75][Stallman &

Sussman 77]Shrobe 771. 'Iis has given rise to special purpose systems for handling logical dependencies.

and even the notion of non-monotonic logics, i.e. logics in which larger premise sets can have fewer valid

consequences [Doyle 77[Reiter 79]. I have borrowed the term truth maintenance system ('rMS) from Jon

Doyle to describe any system with the following four characteristics:

a) It performs some form of propositional deduction from a set of premises.

b) It maintains justifications and explains the results of its deductions.

c) It incrementally updates its beliefs when premises are added or removed.

d) It does dependency directed backtracking, i.e. when a contradiction arises it uses the

recorded justifications to track down the premises which underlie that contradiction.

Two major points about truth maintenance are made here. First a TMS can be based on deduction

in traditional propositional logic. Second, a TMS can be used as an active deductive component of general

deductive systems.

The TMS algorithm described here is based on "propositional constraint propagation" which was

originally described, in essence, by Davis and Putnam [Davis & Putnam 60]. 'Ibis technique is related to the

algebraic constraint propagation of Sussman Ide Kleer & Sussman 781 and the graph labeling algorithms of

Waltz. (Waltz 721. Section two describes the details of this technique, and the way in which the basic TMS

functions listed above can be integrated into it

'Ibe ability to incrementally manipulate the premise set allows a great deal of flexibility.

Assumptions can be made which can later be retracted if they are found to support contradictions. Some

basic techniques for controlling assumptions, and for controlling the premise set in general, are described in

chapter three.

The TMS can be used to perform all propositional deduction in a general deduction framework. The

primary aspect of general deduction which cannot be performed by a TMS is the instantiation of quantified

formula and axiom schema. The position is taken here that those problems which are of a purely propositional

nature can be solved to such a degree that the only difficult issues remaining in automated deduction involve

the control of instantiation.
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2. THE TMS

Thc TMS described here operates on an assertional data base. "Traditionally an assertional data base

has been either a simple set of assertions or a collection of "contexts" each of which could be thought of as a

set of assertions [llewitt 72] [Mcl)ermott 741. The TMS algorithm developed here operates on a data base in

which assertions arc assigned to one of the three states, "true", "false", and "unknown". It is possible to map

this data base to a simple set of assertions by first taking the set of assertions which arc "true" and then adding

the negations of the assertions which are "false". Thus the data base can he simultaneously viewed as a

traditional set of assertions, and as an assignment of the states '*true". "false". and "unknown" to

non-traditional assertions.

'he. different outlkks on the assertional data ba. can lead to some confusion in terminology. For

example suppose one wants to assert that Fred is not a fish. One can speak of "adding the premise" (not (fimh

Fred)). But this act of "adding a premise" may actually involve putting the assertion (fish Fred) in a "false"

state. Ihe remainder of this paper relies on context for the proper interpretation of such tenninology.

There arc four primary functions performed by this TMS. First it performs propositional deduction

%ia a deduction technique which is termed here "propositional constraint propagation". Second it generates

justifications for each deduced truth value. Next it is capable of incrementally updating the data base when

premises arc removed. Finally it is capable of dependency directed backtracking. 'he technique used in

backtracking is easily extended to a refutation mechanism which adds to the deductive power of the TMS.

2.1. Propositional Constraint Propagation

In general a constraint propagation system has a set of "cells" which can take on values, and a set of

"constraints" which constrain those values. Whenever a new value follows from the previously determined

values and a single constraint, this value is deduced. In what will be tenned "simple" constraint propagation

these are the only deductions which are made. Constraint propagation terminates when there are no further

deductions which can be made from single constraints, and the set of constraints is said to be "relaxed". If the

number of values which can be determined by a single constraint is bounded then this process can take no

longer than linear time in the number of constraints.

In propositional constraint propagation the assertions in the data base are viewed as cells or '"TMS

nodes" which can take on one of the values "true" or "false". All logical relations (constraints) in the TMS

take the form of disjunctive clauses such as (v (p. false) (q . true)). This constraint says that is impossible for

both P to be true and Q to be false. Therefore whenever P is true the constraint could be used to deduce that

Q must be true. Likewise whenever Q is false the constraint could be used to deduce that P must be false. As

in the case of general constraint propagation, the TMS will deduce any truth value which follows from ONe

truth values already present and a single constraim (clause). 'This process is iterated until the constraint set is

relaxed. It is possible to add premises and constraints incrementally and the TMS has no difficulty performing

the additional deduction needed to relax the constraint set
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Table 1. Axioms for Propositional Logic

or (v ((or p q) false) (p true) (q . true))

(v ((or p q) true) (p false))

(v ((or p q) . true) (q false))

and (v ((and p q) true) (p false) (q false))

(v ((and p q) false) (p true))

(v ((and p q) false) (q true))

-> (v ((-> p q) false) (p. false) (q true))

(v ((-> p q) true) (p true))

(v ((-> p q) true) (q false))

not (v ((not p) true) (p true))

(v ((not p) false) (p .false))

It is important to note that not all deductions which follow logically from a set of constraints are

deduced by this algorithm. For example, p follows from the two constraints. (v (p. true) (q. true)) and (v (p.

true) (q . false)). However the system can make no deductions from these constraints. Some of the

implications of this observation, and some ways of dealing with such situations are discussed in later sections

of this chapter.

"lbc 'MS performs propositional deduction from a set of propositional premises. 'lcse premises

take the form of assignments of truth values to assertions. "le constraints in the IMS are derived from basic

axioms of propositional logic. Fach of the logical symbols or, and, -4, and not has an associated axiom set

which can be used to generate clausal constraints. The axioms for each of these symbols are given in table 1.

For each assertion in the data base which involves one of the basic logical symbols the axioms for that symbol

are used to generate the clausal constraints relevant to that assertion. In reading these axioms it is important

to remember that each clause gives a means by which each term in that clause might be deduced.

To get some feel for the deductive power of a propositional constraint propagator some examples

need be developed. For convenience the scenarios use an assert function which takes an assertion

Scenario I. A Deduction Involving or

(assert '(not r))

(NOT A)

(assert *(or r s))

(OR A S)

(truth *s)

TRUE
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represented as an s-expression and gives the corresponding ''MS node a truth value of "true" as a premise. In

the scenarios things typed by the user will appear in lower case while responses by the systcm will appear in

upper case.

To understand scenario I consider the constraints which arc created when the assertions (or r s) and

(not r) are created. Among the constraints generated for (not r) is the clause (v ((not r) . false) (f . false)).

When (not r) is made true r is deduced to be false via this constraint. In general the axioms for not guarantee

that an assertion and its negation always have opposite truth values. Among the constraints generated for (or

r s) is the clause (v ((or r s). ralse) (r. true) (s . true)). When (or r s) is made true this clause is used to deduce

that s must be true.

In general there are three assertions which are relevant to an application of one of the logical

symbols and, or. and -. 1he first assertion is the application itself, such as (or r s). The second two assertions

are the arguments in this assertion, such as r and s. The propositional axioms guarantee that whenever a truth

value of one of these assertions can be deduced from truth values assigned to the other two, that deduction is

made by the TMS. Scenario 2 is another example of the type of deduction which is carried out by the TMS.

2.2. Justifications

Whenever a deduction is made a justification for the deduced value is constructed. Every deduction

made by the wI'MS involves only a single clause, along with the truth values of assertions in that clause. Thus

the clause involved in a deduction carries all the information needed for a justification. Therefore in the TMS

a justification for a deduced truth value is simply a pointer to the clause which was used to deduce that value.

Every deduced truth value can be associated with a set of supporting truth values via its justification.

If any of these values were deduced by the system (i.e. they are not premises) then they will in turn have

supporting values. By searching down such support structures it is always possible to find the set of premises

from which any deduced value was derived. A query function, why, has been defined to give the set of

supporting values for any deduced truth value. Scenario 3 gives an example of the use of why and figure 1

diagrams the support structure involved. The function why can take a numeric argument which refers to the

Scenario 2. A Deduction Involving )

(assert (-> r a))
(-R S)

(assert '(-) a t))
(-) S T)

(assert '(not t))
(NlOT T) "

(truth r)
FALS
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Scenario 3. An example of the use of why

(a$sert *(-:, r s))
(-> R S)

(assert '(-3. s t))

(-> S T)

(assert '(not t))
(NOT T)

(why 'r)

((R IS FALSE FROM)

(I (-> R S) IS TRUE)

(2 S IS FALSE))

(why 2)

((S IS FALSE FROM)
(1 (->. S T) IS TRUE)

(2 T IS FALSE))

(why 2)

((T IS FALSE FROM)

(I (NOT T) IS TRUE))

(WHY 1)

((NOT T) IS TRUE AS A PREMISE)

Fig. 1. T'he Support Structure for Scenario 3

A~-. -! 1 S Irh rt
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assertion which was associated with that number in the last explanation given.

Premises are distinguished in the system as truth values with no justification. At any time the user of

the TMS may add any truth value as a premise other than the opposite of a truth value already present as a

premise. If the added premise is a truth value which was already deduced by the system then the justification

for the deduced value is simply removed. If the added truth value is the opposite of one already deduced by

the system then the deduced value is retracted and the opposite value is assigned. The details of how this is

done and how the resulting contradiction is handled are discussed in the next two sections.

It is important that support structures be "well founded". 'Ihat is to say that no deduced truth value

can depend on itself. For the deduction process as defined so far this is guaranteed since justifications are

determined at the instant at which a value is deduced and no value in the system yet depends on the deduced

value. However some care need be taken during incremental retraction to see that supports remain well

founded. This will he discussed in the next section.

2.3. Retraction

One of the fundamental operations of truth maintenance is incrementally updating the assertional

data base when premises are retracted. 'Ibis should be done in such a way that all deductions are made which

would have been made if the system had started with the new premise set, and that every deduced truth value

(every one which is not a premise) has a well founded support structure. There are two stages in the retraction

process. First all deduced truth values which depended on the removed premise arc removed. This is done by

checking all clauses which contain any assertion whose truth value was retracted to see if it now invalidly

supports some other value. If it does then that value is recursively retracted. ihe second phase of the

retraction process involves checking all assertions which had truth values retracted to see if some value can be

deduced for them in some other way. Because all deduction is done in an environment in which all

justifications are valid and well founded, the justifications resulting from any deduction must be valid and

well founded.

Retraction is also involved when the user adds a premise which the system has already deduced to

be false; i.e. the user wishes to assign a truth value to an assertion as a premise but the system has already

deduced the opposite value for that assertion. In this case phase one of the retraction process is applied to the

deduced truth value so that the deduced value is removed along with all of its consequences. Then the truth

value being given that assertion as a premise is added. Finally phase two of the retraction process is applied to

perform any deduction which can done via standard propositional constraint propagation. Of course the data

base will then be in a state of contradiction, which is discussed in the next section.

-- . . .. .. .. ... .. "' -' -"- lili lil lli . . ..Ii .. .. i
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2.4. Backtracking and Refutation

the crm "contradiction" will be used here to refer to a clause in the TMS all of whose terms are

false. For example the clause (v (p . false) (q . true)) would be a contradiction in any situation in which p was

true and q was false. Contradictions can come into existence at any time during deduction or the addition of

premises. Ibe premise set underlying a contradiction is the union of the premise sets for the truth values

directly involved. To ensure that backtracking does not interfere with deduction or retraction, all processing

of contradictions is done outside any of these processes. When contradictions arise the system asks the user

(or the system using the TMS) to choose one of the premises underlying the contradiction for retraction. Ibis

process has been termed "dependency directed backtracking" [Stallman & Sussinan 771 and a simple example

is gi% en in scenario 4.

When a premise which underlies a contradiction is retracted it is important that its negation be

deduced to prevent a re-occurrence of the same contradiction at a later time. Tis can sometimes be done by

the propositional constraint propagation algorithm already discussed. Fhowcvcr there are cases where this is

not so. For example consider what happens in scenario 5. lie assertion c logically follows from the assertions

(-> a c). (-) h c), and (or a b). but the system is incapable of deducing this. When (not c) is asserted the system

deduces that both a and b must be false which leads to the clause (v ((or a b) . false) (a . true) (b . true))

becoming a contradiction (a clause involving one of the the implications could just as easily become a

contradiction if deduction was done in a different order). The assertion (not c) is one of the premises

underlying this contradiction. Without some additional mechanism however the system is incapable of

Scenario 4. A Simple Example of Backtracking

(assert '(or r s))
(OR n s)

(assert '(not r))
(NOT R)

(assert '(not s))
((THERE IS A CONTRADICTION FROM

((OR R S) BEING TRUE)
(R BEING FALSE)

(S BEING FALSE))
(THE UNDERLYING PREMISES ARE

(1 (OR R S) IS TRUE)
(2 (NOT R) IS TRUE)

(3 (NOT S) IS TRUE))
(WHICH PREMISE SHOULD BE RETRACTED >)) 3

(why 's)
(S IS TRUE FROM

(1 (OR R S) IS TRUE)

(2 R IS false))
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deducing that (not c) must be false when the truth of (not c) is retracted.

One simple solution is to add a clause which contains the negations of all the premises underlying

the contradiction. In the case of scenario 5 this clause is:

(v ((or a b). false) ((-> a c). false) ((-> b c). false) ((not c). false))

Any such generated clause is guaranteed to be a logical tautology because all of the involved premises lcad to

a contradiction given the clauses already in the system, which are themselves all logical tautologies. Once

such a clause is added it can be used to deduce the negation of any one of the premises whenever all the

others are believed. Thus when a single premise is retracted its negation is guaranteed to be deducible by the

system.

Actually the TMS uses a more complex algorithm which performs local clause resolution. 'his

Scenario 5. Another example of backtracking

(assert '(-> a c))

(-> A C)

(assert '(-> b c))

(-> B C)

(assert '(or a b))
(OR A 8)

(why 'c)
(I DONT KNOW WHETHER C IS TRUE OR FALSE)

(assert '(not c))

((THERE IS A CONTRADICTION FROM

(A IS FALSE)

(B IS FALSE)

((OR A B) IS TRUE))

(THE UNDERLYING PREMISES ARE

(1 (-> A C) IS TRUE)
(2 (-> C) IS TRUE)

(3 (OR A B) IS TRUE)
(4 (NOT C) IS TRUE))

(WHICH PREMISE SHOULD BE RETRACTED >)) 4

(why 'c)
(C IS TRUE FROM

(1 (NOT C) IS FALSE))

(why 1)
((NOT C) IS FALSE FROM

(I (-I A C) IS TRUE)
(2(-2 C) IS TRUE)
(3 (OR A 8) IS TRUE))

L | -| -- ' '- ------- .
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Scenario 6. An Example or Refutation

(assert *(-> a b))
(-> A 5)

(assert '(-> b c))

(-> C)

(why '(-> a c))

(I DONT KNOW WHETHER (-> A C) IS TRUE OR FALSE)

(try-to-show (-> a C))

T

(why '(-> a c))

((-> A C) IS TRUE FROM

(1 (-> A B) IS TRUE)

(2 (-> B C) IS TRUE))

produces more local constraints which are deductively more powerful and give shorter, more structured

justifications when they are used in deductions. However the details of this more sophisticated procedure are

irrelevant to the current discussion and the interested reader is referred to appendix one for the lisp code

which performs backtracking in the implemented TMS.

The backtracking mechanism can be used in a refutation techniqu which increases the deductive

power of the system. In refutation the system attempts to deduce a specific truth value for an assertion by first

adding the negation of that value as a premise. if no contradiction arises then the attempted deduction fails

and the added truth value is removed. If a contradiction does arise then the added value must underlie it and

the system deduces the negation of this value in the standard backtracking manner. ilius the desired truth

value gets deduced. Scenario 6 gives an example of the use of a try-to-show function which invokes the

refutation mechanism.

'-I
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3. PREMISE CONTROL

The "rMS can be thought of as an instrument which allows one to view the consequences of a

premise set. Being similar to other instrument% of examination, the TMS is useful not only in examining

given premise sets, but also in determining those prcmises which are of interest. This Chapter investigates

some ways in which the TMS can be used to feed back infonnation from the assertional data base in

manipulating the premise set under examination.

A premise controller can be used to automate some manipulations of the premise set. This premise

controller can have data structures which arc completely independent of the assertional data base. For

example the premise controller might associate likelih(xds with each potential premise. 'l'he user could then

manipulate these likelihoods leaving the actual premise control up to the controller. 'Ihe first two sections of

this chapter investigate some methods for doing this type of automatic premise control.

The premise controller can also make use of the assertional data base when choosing premises. For

example suppose that the TMS has deduced that the assertion (taller Bill John) is true, which is interpreted as

saying that Bill is taller than John. In this case it might be useful to assume that Bill is heavier than John. The

last section of this chapter describes a technique for having this kind of premise control done automatically.

3.1. Assumptions

A simple premise controller can be constructed by making a distinction between solid facts and

assumptions. In this system the user would specify a set of solid facts and a set of assumptions. The premise

controller would then put both in the premise set. If contradictions arise then the premise controller will

always retract an assumption before retracting a solid fact. If there is more than one assumption underlying a

contradiction then the user is asked to choose one for retraction. Similarly if a contradiction arises which has

no underlying assumptions then the user must choose some "solid fact" for retraction.

An example of the use of assumptions in premise control is given in Scenario 7. In this scenario, and

all those that follow, the user is interacting with a premise controller which in turn deals directly with the

TMS. '[us the assert function tells the premise controller that the given assertion is a solid fact, and the

assume function tells it that the given assertion is an assumption.

In scenario 7 the premise controller is given two assumptions. First r is assumed, which leads to a

deduction that t is false. Then t is assumed and the premise controller makes t a premise. Thiis causes the

clause which justified t being false to become a contradiction. When this contradiction occurs only the

assumptions underlying the contradiction are presented to the user, thus the two implications, (-) r s) and ()

s (not t)), are not considered for retraction. When the assumption r is retracted its negation is automatically

deduced.

Another example of premise control via assumptions is given in scenario 8. In this scenario three

assumptions are made. I.ogical constraints are placed on these assumptions such that any one of them can be

true, but any two of them lead to a contradiction. When r and s are both assumed a contradiction arises and
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Scenario 7. An Examplc or Premhise Control with Assumptions

(assert *(>r a))
(-> R S)

(assert s- (not t)))

(>S (NOT T))

(assume 'r)

R

(why t)

(T IS FALSE FROM

(1 (NOT T) IS TRUE))

(assume *t)

((CONTRADICTION FROM

(T IS TRUE)

((NOT T) IS TRUE))

(UNDERLYING ASSUMPTIONS ARE

(I T IS TRUE)

(2 R IS TRUE))

(WHICH ASSUMPTION SHOULD BE RETRACTED)) 2

(why r)

(R IS FALSE FROM

(I (-> R S) IS TRUE)

(2 S IS FALSE))

the user makes a choice between these two assumptions, leading to a retraction of r. When t is assumed dhe

user must then choose betwccn t and s, leading to a retraction of s. At this point the user has not expressed

any preference between r and t, both of which were given to the premise controller as assumptions. So the

premise controller reinstates r as a premise and forces this choice to be made. In general the premise

controller never makes an arbitrary choice between assumptions.

3.2. Likelihood Classes

A generalization of the assumption approach to premise control involves placing potential premises

in likelihood classes. The assumption approach can be viewed as a special case of this in which there are two

likelihood classes, one for known facts and one for assumptions. When contradictions arise in die general

likelihood approach, less likely assumptions arc always preferred for retraction. 'Mle user need only be

consulted when there are several premises which tie for being the least likely premises underlying a

contradiction. Again the premise controller is very careful not to make arbitrary choices between premises in

the same class.

An example of a case in which it might be desirable to have more than two premise classes involves a

numerical approximately equal rclation, ~.Such a relation is not truly transitive, i.e. (..a b) and (.b c) does
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Scenario & A More Complex Example

(assert '(not (and r s)))

(NOT (AND R S))

(assert '(not (and a t)))

(NOT (AND S '))

(assert '(not (and r t)))
(NOT (AND R T))

(assume 'r)
R

(assume s)
((CONTRADICTION FROM

(AND R S) IS FALSE)

(S IS TRUE)

a (R IS TRUE))

(THE UNDERLYING ASSUMPTIONS ARE

(1 S IS TRUE)

(2 R IS TRUE))

(WHICH SHOULD BE RETRACTED)) 2

(assume t)

((CONTRADICTION FROM
((AND S T) IS FALSE)

(S IS TRUE)

(T IS TRUE))

(THE UNDERLYING ASSUMPTIONS ARE

(I s Is TRUE)
(2 T IS TRUE))

(WHICH SHOULD BE RETRACTED)) I

((CONTRADICTION FROM
((AND R T) IS FALSE)

(R IS TRUE)

(T IS TRUE))

(THE UNDERLYING ASSUMPTIONS ARE

(1 R IS TRUE)
(2 T IS TRUE))

(WHICH SHOULD OE RETRACTED)) 1

not necessarily imply that (- a c): otherwise one could prove that things of arbitrarily dilering si z were

roughly equal. lNowever oe might want to consider this transitivity to be very likely. One might aso have

other assumptions in the systems, say about transistor states which are much less certain. "hus one would

want at least three likelihood classes used in premise control, one for known ficts, one for facts derived frm

the transitivity of the roughly equal relation, and one for less certain assumptions. 'h code ror a premise

controller of this type is presented in appendix two.

I-1
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r

3.3. Likelihood Assertions

In addition to retracting premises which lead to a contradiction, a premise controller should be able

to use deductions made by the TMS to do more positive types of premise control. For example. if it has been

deduced that one person is taller than another, one might want to assume that he is also heavier. Or if one has

deduced that some animal is a bird, one might want to assume that it can fly. This type of premise control can

he done with likelihood assertions.

Assuming that the a general likelihood class approach is taken to prcmise control, one can imagine

likelihood asertions of the form: (very-likely p). which is intended to mean that the assertion p is very likely to

be true. llbere could be a whole range of such likelihood "predicates" such as sonichat-likely. likely,

very-likely, etc. Of course it remains to be shown how a system is capable of using (or "understanding") such

assertions.

One way of using such assertions is to have the premise controller continually monitor the data base

and use them in placing potential premises in likelih(x)d classes. However if the system has assumed that

Wome animal can fly it might be nice to know whh, this assumption was made. While it would be possible to

place justification machinery in the premise controller there is a much simpler solution. For each assertion of

the form (likely p) the system automatically create% the assertion (-> (likely p) p). Ibis implication is then

considered to be a "likely" premise by the premise controller. Similar implications would be created for other

likelihood predicates and given corresponding status in the premise controller. In this way if the assertion

(likely p) is ever deduced to be tnie. the assertion p will also become true. 'Ibe support for p will involve the

likelihood assertion and it will therefore be clear why p is believed. However if the deduction of p ever leads

to a contradiction then the assumption (-) (likely p) p) can be retracted. Scenario 9 gives an example of the

use of a likelihood assertion.

Scenario 9. A use of Iikelihood Assertion

(assert '(-: (bird fred) (likely (flys fred))))

(-> (BIRD FRED) (LIKELY (FLYS FRED)))

(assert '(bird fred))

(BIRD FRED)

(why '(flys fred))
((FLYS FRED) IS TRUE FROM

(1 (-2, (LIKELY (FLYS FRED)) (FLYS FRED)) IS TRUE)

(2 (LIKELY (FLYS FRED)) IS TRUE))

(why 2)
((LIKELY (FLYS FRED)) IS TRUE FROM

(1 (-, (BIRD FRED) (LIKELY (FLYS FRED))) IS TRUE)

(2 (BIRD FRED) IS TRUE))
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4. INSTANTIATION CONTROL

It is well known that automated deduction and theorem proving systems are subject to explosive

computations. However the TMS described in the previous sections seems free of this problem. While it is

possible to make the premise controller do a great deal of backtracking (exponential in the number of

backtrackable assumptions), in practice this is not important because the number of assumptions is usually

small and they do not interact in complex manners. 'Te difference between the IMS and more general

deductive systems is that the TMS deals with propositional logic only. All of the difficult problems in

automated deduction involve instantiation ofquantified formulae and axiom schemas.

From the point of view taken here instaniaion and deduction are separate processes. Deduction is

the process of assigning truth values to assertions based on other truth values already in the system. Ibis can

be done entirely by the TMS. Instantiation can be though of as generating propositional formulae upon

which the TMS can operate. "lis outlook on deduction leads to novel control strategies.

4.1. For-All Assertions

Quantified knowledge can be represented in for-all assertions. Scenario 10 gives an example of the

use of such assertions. In this scenario the assertion (for-all (dog x) (mamnal x)) represents the statement

that all dogs are mammals. In general a for-all assertion has two parts. The first is an "antecedent assertion"

such as (dog x) in the example, and is similar to a trigger pattern in a PILANNER demon. Symbols which

begin with the character 'T' are treated as variables which can match any s-expression. Ihe second part of a

for-all assertion is a consequent assertion, instances of which follow from the for-all assertion and

corresponding instances of the antecedent assertion.

For deductions to be made from the assertion (for-all (dog x) (manmual !x)) constraints must be

placed in the IMS which involve this assertion. TMS constraints for assertions involving the basic logical

connectives are derived from axioms for those connectives. Similarly constraints involving for-all assertions

are derived from implicit axioms for for-all. Ibe following constraint is an instance of these axioms. It says

that the above for-all assertion along with the assertion (dog Fred) implies the assertion (manual Fred).

(v ((for-all (dog I) (mamal Ix)) . false)
((dog Fred) . false)
((mammal Fred) . true))

It is clear that it would be impossible to generate all instances of the axioms for for-all assertions

whenever such an assertion is created in the data base. Therefore some more sophisticated control technique

is required for this instantiation process. When a for-all assertion is created a demon is constructed which is

invoked every time an assertion that matches the antecedent pattern is created in the data base. Each time this

demon is invoked it uses the variable binding generated by the triggering assertion to create a corresponding

instance of the consequent assertion. Ihben it adds a constraint, similar to the one above, which states that the

for-all assertion along with this instance 6f the antecedent assertion implies the instance of the consequent
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Scenario 10. A use of for-all

(assert '(for-all (dog Ix) (mammal Ix)))
(FOR-ALL (DOG IX) (MAMMAL IX))

(assert '(dog fred))

(DOG FRED)

(why '(mammal fred))

((MAMMAL FRED) IS TRUE FROM

(1 (FOR-ALL (DOG IX) (MAMMAL IX)) IS TRUE)

(2 (DOG FRED) IS TRUE))

assertion. It is important to keep ill mind that the triggering condition is the creation of an assertion not the

assignment of a true truth 'alue to that assertion. Thus the above constraint could have been generated even if

the assertion (dog fred) was not known to be true. In this case the constraint could be used to deduce that this

assertion is in fact false.

4.2. raxonomic Hierarchies: An Example

A system for reasoning about taxonomic hierarchies will he developed in this section. Each

taxonomic class is represented by a predicate. The taxonomic hierarchy can be represented by assertions of

the form:

(for-all (cat Ix) (mammal Ix))

(for-all (dog Ix) (mammal Ix))

(for-all (dog Ix) (not (cat Ix)))

(for-all (cat Ix) (not (dog Ix)))

Figure 2 shows a taxonomic hierarchy. A set of assertions similar to the above assertions concerning

the predicate mammal arc asserted for each non-terminal predicate in the hierarchical tree. Scenario 11 gives

some sample deductions the system is capable of making from these assertions. When the assertion (mouse

fred) is created the assertion (rodent fred) is also created and a constraint is installed which says that the

assertion that all mice are rodents along with the assertion that Fred is a mouse imply the assertion that Fred

is a rodent. The creation of the assertion (rodent fred) in turn leads to the creation of other constraints and

assertions until the top of the hierarchy is reached. Now when (rodent rred) becomes true, the TMS

automatically deduces that fred is a member of every class superior to rodent in the hierarchy.

Now consider what the system does in response to the form (why '(ladybug fred)). Since the

assertion (ladybug fred) did not exist previously in the system the why function first creates this assertion. This

* creation results in the creation of further assertions and logical constraints. 'lhese newly created constraints

* interact with the previous constraints at the level of vertebrate and arthropod. Since it was asserted in
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Fig. 2. A Simple laxonomic Hierarchy

mamnmal fish crustacean i

rodent Primate butterfly beetle

Mouse rabbil Jun* bug ladybug

Scenario 11. Somne Deductions Involving (he Taxonoinic Hierarchy

(assert '(mouse fred))

(MOUSE FRED)

(why '(vertebrate fred))

((VERTEBRATE FRED) IS TRUE FROM

(I (FOR-ALL (MAMMAL IX) (VERTEBRATE IX)) IS TRUE)

(2 (MAMMAL FRED) IS TRUE))

(why '(ladybug fred))

((LADYBUG FRED) IS FALSE FROM

(I (FOR-ALL (LADYBUG IX) (BEETLE IX)) IS TRUE)

(2 (BEETLE FRED) IS FALSE))

constructing the hierarchy that no vertebrates are arthropods. the system had already deduced that the
assertion (arthropod fred) was flase. Ibis leads to the deduction that Fred is not an insect, and therefore not a
beetlc, and therefore not a ladybug. a

T7hc time it takes it takes to do the types of instantiations and deductions exemplified in scenario 11
is proportional to thc depth of the hierarchy which is usually proportional to the log of tb~c number of classm
involved. ili interesting thing about the above deductions however is not the efiient computation time
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invoh d but instead the simplicity of the control structure used in achieving it. Normally to achieve

comparable efficiency one would have to use both forward chaining and backward chaining control structures

[Moore 751. Here a single method for controlling instantiation (as opposed to deduction) fully achieves the

desired efficiency.

4.3. Areas ror Further Research

The instantiation control techniques which have been discussed so far are only a beginning. Not all

domains in deduction lend themselves to so simple a solution as do taxonornic hierarchies. The simple

statement that the mother of any person is a person leads to infinite instantiation if a standard ror-all assertion

is used. This section gives some directions for research into other instantiation control techniques. Tbe major

point here does not concern specific mechanisms for controlling instantiation, but rather that control of

deduction in general should be thought of as control of instantiation.

4.3.1 I)MONIC INVOCATION

In controlling the instantiation of quantified knowledge one would like a convenient way of

specifying general conditions under which instantiation is to take place. The axioms for the basic

propositional logical operators get instantiated whenever an assertion using one of these operators is created

in the data base. This type of demonic invocation will be called "reference invocation". '11e following is a

demon specification utilizing reference invocation which might be used to control the knowledge that the

mother of any person is a person:

(notice ((assertion-reference (person ix))
(term-reference (mother Ix)))

(install-constraint '(-> (and (person Ix)
(for-all y

(-> (person y)
(person (mother y)))))

(person (mother Ix)))))

Demon specifications of the above form have two parts. First is a set of conditions which must be

met for the demon to fire. 'lie second is a body of Lisp code which defines the action taken by the demon
when it fires. The trigger conditions of the above demon are both reference conditions which are met

whenever a term or assertion matching the given pattern is referenced. When a demon is triggered the

variables in the trigger patterns are bound to s-expressions representing terms and assertions. l'hese bindings

are then used to replace all occurrences of the variables in the body with the corresponding s-expressions

befoire the body is evaluated. In the above example install-constraint is used instead of assert because the

implication being asserted is really a logical tautology and therefore only a TMS clause equivalent to the

implication need be created (no node is generated to represent the implication itself).

Other types (f trigger conditions are conceivable. The simplest would trigger whenever a,'ertions of

a certain form became true (or false). Assertions and terms might also be assigned "interestingneris". )emons

4 age
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could then trigger when assertions or terms of certain forms are "interesting". Such control states assigned to

assertions and terms would be closely related to "control assertions" which have been used in some recent

work with pattern directed invocation systems Ide Klcer CL al. 771 [Shrobe 791. However the use of such

techniques for instantiation control (as opposed to deduction control) is still largely unexplored.

4.3.2 SPECIAL PURPOSE SUBSYSTEMS

An important aspect of any automated deduction system is the ease with which special purpose

subsystems can be incorporated. For example one almost certainly wants some special purpose algorithms for

dealing with equalities [Nelson & Oppen 791 [McAflester 801. In die present context such algorithms can be

viewed as controlling the instantiation of the substitution axioms for equality, generating new terms and

equating them with other terms in the system. A fu~ll discussion of the ways equality can be handled is beyond

the scope of this work. but it is important to note that special purpose procedures seem a better option than

any attempt to handle it entirely through demonic mechanisms.

Another example of an area in which special purpose subsystems would be desirable is algebraic

simplification. There are good algorithms for doing symbolic simplification of algebraic expressions and any

reasoning system which must manipulate such expressions should be able to use these algorithms jMcAllester

801. The feasibility of incorporating arbitrary special purpose deduction algorithms and decision procedures is

only beginning to be explored.
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5. RELATION TO OTIIER WORK

The earliest predecessor to the system described here is probably the Davis-Putnam algorithm for

determining the satisfiability of sentences in first order predicate calculus (Davis & Putnam 601. 'he feature of

their algorithm which resembles the TMS is their technique for determining satisfiability of purely

propositional sentences. Thcir method translated the propositional sentence to a set of disjunctive clauses and

then performed "propositional constraint propagation" on those clauses much as does the TMS (but they did

not call it that). Propositional constraint propagation can also be seen to be very similar to unit clause

resolution (resolving first with clauses which contain only a single term), However it is not really appropriate

to compare the TMS to any fill fledged resolution system since the TMS does not deal with variables (Le.

quantified formula).

'Iliese early systems however did not perform the basic TMS functions of justification maintenance,

incremental retraction, and dependency directed backtracking. The earliest attempt to handle incremental

retraction probably dates back to the "add" and "delete" lists in the STRIPS language [Fikes 711. and

PLANNER demons which triggered on the removal of assertions [Hewitt 721 [Sussman 711 IMcl)ermott 74].

Later a dependency based mechanism was developed by Richard Fikes for reasoning about state transitions

[Fikes 751. A more sophisticated dependency directed retraction mechanism was later developed by Stallman

and Sussman for use in an electrical circuit analysis system (Stallman & Sussman 771. 'lheir system could

make assumptions about transistor states, and when a contradiction was derived, the system uses dependency

directed backtracking to track down the particular underlying assumptions.

"llie first domain independent system which performed all of the basic truth maintenance functions

was developed by Jon )oyle (Doyle 781. )oyle's system used "non-monotonic" dependencies which justify a

node being "in" by the fact that some other node is "out". Such dependencies arc typically used to make

assumptions. For example one might assume A by justifying A with the fact that (not A) is out. T'hus if (not A)

ever becomes in, the justification for A will no longer be valid and A will become out. This leads to problems

however if the system is able to prove (not A) from the assumption of A. First (not A) comes in forcing A out.

But because (not A) depends on A this in turn causes (not A) to become out, which, via the non-monotonic

dependency, leads to A becoming in, which leads to (not A) becoming in, ad infinitum. While there may be

ways to ix this problem, it seems hard to motivate the introduction of non-monotonic mechanisms which lead

to unnecessary complications.

Another problem with non-monotonic systems is their obscure semantics. Attempts to formalize

non-monotonic logics" are plagued by "unsatisfiable" situations similar to the infinite computation

described above IMcl~rmott 78). While it may be possible to debug these problems, the fundamental

motivation behind non-monotonic justifications is suspect. Certainly one cannot argue that an assumption is

made because one cannot prove its negation. At any time there is an infinite number of assertions which the

system can not prove to be false, but one would certainly not want to assume all these things. 'herefore a

non-monotonic justification does not capture the true reason for making an assumption. It might capture what

the system should do if it could prove the negation of an assumption, but this is a backtracking issue and
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should not be represented as a justification.

In the truth maintenance system described in this paper as much as possible is done in a traditional

framework. The problem with non-monotonic logics is that they bring in non-traditional formalisms too

early, muddying deduction, justifications, and backtracking. T7he aspect of truth maintenance which cannot be

formalized in a traditional framework is premise control, which has only just begun to be explored. foofoo

Ric
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6. APPENDIX 1: TIlE TMS CODE

6.1. The User Interface

These Finctions interact with the the premise controller. "[he premise controller works on a priority

class scheme which can bc initialized to have any number of priority classes, which are assigned consecutive

integers from the least to the most certain. The user levcl functions given hcre work with three priority classes,

numbered I through 3. The functions assert and assume put assertions in the most certain and least certain

classes respectively. The middle class is accessed via very-likely assertions, which are documented below.

(prmcon-init 1 3)

(defun assert (assertion)
(set-default (referenced-node assertion) 'true 3)
assertion)

(defun assume (assertion)
(set-default (referenced-node assertion) 'true 1)
assertion)

(defun retract (assertion)
(remove-default (referenced-node assertion)))

[ he assertions are placed in a hash table which is used to insure that no two TMS nodes have the

same assertion.

(declare (special *assertion-table*))

(setq *assertion-table* (make-array nil 'art-q 4000))

(aefun index (form)
(remainder (hash form) 4000))

(defun referenced-node (assertion)
(let ((ass (virt-assoc assertion

(ar-i *assertion-table* (index assertion)))))
(if (cdr ass)

(cdr ass)
(let ((node (make-tms-node)))

(setf (cdr ass) node)
(setf (assertion node) assertion)
(instantiate node assertion)
node))))

(defmacro in-funs (symbol)
'(get ,symbol 'in-funs))

(defun Instantiate (node assertion)
(if (and (listp assertion) (symbolp (car assertion)))

(mapc 'funcall (in-funs (car assertion))

(circular-list node)
(circular-list assertion))))
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These functions instantiate the basic axioms of propositional logic in the TMS.

(defun ->instance (node assertion)
(let ((nl (referenced-node (cadr assertion)))

(nZ (referenced-node (caddr assertion))))
(add-clause (list (cons node 'false)

(cons nI 'false)
(cons n2 'true)))

(add-clause (list (cons node 'true) (cons nl 'true)))
(add-clause (list (cons node 'true) (cons n2 'false)))))

(addf '->instance (in-funs '->))

(defun or-instance (node assertion)
(let ((nl (referenced-node (cadr assertion)))

(n2 (referenced-node (caddr assertion))))

(add-clause (list (cons node 'false)
(cons nI 'true)

(cons n2 'true)))
(add-clause (list (cons node 'true) (cons nI 'false)))
(add-clause (list (cons node 'true) (cons n2 'false)))))

(addf 'or-instance (in-funs 'or))

(defun and-instance (node assertion)

(lot ((nI (referenced-node (cadr assertion)))

(n2 (referenced-node (caddr assertion))))
(add-clause (list (cons node 'true)

(cons nI 'false)
(cons n2 'false)))

(add-clause (list (cons node 'false) (cons ni 'true)))
(add-clause (list (cons node 'false) (cons n2 'true)))))

(addf 'and-instance (in-funs 'and))

(defun not-instance (node assertion)

(let ((nl (referenced-node (cadr assertion))))
(add-clause (list (cons node 'true) (cons ni 'true)))
(add-clause (list (cons node 'false) (cons ni 'false)))))

(addf 'not-instance (in-funs 'not))

These functions interface likelihood assertions with the premise controller.

(defun likely-instance (node assertion)

(assume '(-> ,assertion ,(cadr assertion))))

(addf 'likely-instance (in-funs 'likely))

(defun very-likely-instance (node assertion)
(let ((nI (referenced-node '(-> ,assertion ,(cadr assertion)))))

(set-default nI 'true 2)))

(addf 'very-likely-instance (in-funs 'very-likely))
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(defun try-to-show (assertion)
(let ((node (referenced-node assertion)))

(refute (cons node 'false))

(eq (truth node) 'true)))

(defun why (item)
(if (and (numberp item) (- item 0))

(pop-query)
(let ((node (if (numberp item)

(answer item)
(referenced-node item))))

(cond ((unknown? node)
'(I dont know whether or not ,(assertion node) is true))

((null (support node))

'(.(assertion node) is .(truth node) as

OS(cdr (assoc (certainty node) '((1 a likely)
(2 a very-likely)

(3 an asserted))))
premi se))

(t (push-query (cons '(.(assertion node) is ,(truth node) from)
(fmapcar '(lambda (term)

(if (not (eq (car term) node))

(cons '(.(assertion (car term))
is
.(truth (car term)))

(car term))))

(clause-list (support node))))))))))

4;(
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6.2. The TMS

(declare (special *contra-listo $remod-liStO noticarss
*premise-selector* Opremise-chockor*))

(defun tins-mit (prem-selector pruom-checker)
(setq *premise-selector* prem-sels~tor)
(setq *premise-checker* prem-checker)
(setq *contra-llst* nil)
'(tins-ready))

(defstruct (tins-node)
assertion
(truth 'unknown)
support
true-not icers
fal se-not icers
unknown-not icers
nag-clauses
pos-clauses
external-properties)

(definacro opposite (value)
'(if (eq ,value 'true) 'false 'true))

(detmacro clauses (node value)
'(if (eq ,value 'true)

(pos-clauses ,node)
(neg-clauses ,node)))

(definacro op-clauses (node value)
(it (eq value 'true)

(nag-clauses node)
(pos-clauses ,node)))

(definacro noticers (node value)
'(cond ((eq .value 'true)

(true-noticers ,node))
((eq value 'false)
(false-noticers node))
(t (unknown-noticers node))))

(defmacro unknown? (node)
'(eq (truth node) 'unknown))

(defmac premise? (node)
(and (not (unknown? node)) (null (support node))))

(defmac true-term? (term)
(eq (truth (car termn)) (cdr term)))

(definac false-term? (term)
(eq (truth (car term)) (opposite (cdr term))))

(defmacro unknown-term? (tern)
'(unknown? (car .term)))

(defmacro op-term (term)
'(cons (car .term) (opposite (cdr .term))))
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(defmacro make-clause (
*(cons nil nil))

(defmacro clause-list (clause)
'(car ,clause))

(defmacro pet (clause)
(cdr ,clause))

(defun add-clause (clist)
(let ((clause (add-2 clist))

(*noticers* nil))
(deduce-check clause)
(run-noticers)))

(defun add-2 (c-list)
(let ((clause (make-clause)))

(setf (clause-list clause) (merge c-list nil))
(mapc '(lambda (term)

(addt clause (clauses (car term) (cdr term))))
(clause-list clause))

(setf (psat clause) (camp-psat (clause-list clause)))
clause))

(deftail comp-psat (clist)
(if (null dliet)

0
(if (not (false-term? (car clist)))

(1+ (comp-peat (cdr clist)))
(comp-peat (cdr clist)))))
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(dofun make-premise (node value)
(let ((Onoticerso nil))

(cond ((unknown? node)
(set-truth node value))

((eq value (truth node))
(setf (support node) nil))

(t (let ((*removed-list* nil))
(remove-truth node)
(set-truth node value)
(removed-check))))

(run-noticers)))

(defun set-truth (node value)
(set-2 node value)
(mapc '(lambda (noticer)

(addf noticer *noticers'))
(noticers node value))

(mapc 'deduce-check (op-clauses node value)))

(defun set-2 (node value)
(mapc '(lambda (clause)

(setf (psat clause) (1- (psat clause))))
(op-clauses node value))

(setf (truth node) value))

(defun deduce-check (clause)
(cond ((- (psat clause) 1)

(let ((term (unknown-term (clause-list clause))))
(if term

(deduce (car term) (cdr term) clause))))
((- (psat clause) 0)
(addf clause *contra-list*))))

(deftail unknown-term (clist)
(cond ((null clist) nil)

((unknown-term? (car c1ist))
(car clist))
(t (unknown-term (cdr clist)))))

(defun deduce (node value sup-clause)
(setf (support node) sup-clause)
(set-truth node value))
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(defun retract-premise (node)
(if (promise? node)

(let ((Onoticers* nil)
(*removed-llsto nil))

(remove-truth node)
(removed-check)
(run-noticers))))

(defun remove-truth (node)
(let ((value (truth node)))

(remve-? node value)
(addf node *removed-llst*)
(mapc 'retract-check (op-clauses node value))))

(defun remove-2 (node value)
(if (unknown? node) (break remving-truth-of-unknown-node))
(mapc '(lambda (clause)

(set? (past clause) (1+ (past clause))))
(op-clauses node value))

(set? (truth node) 'unknown)
(setf (support node) nil))

(defun retract-check (clause)
(if (> (psat clause) 1)

(let ((noWe (satistier (clause-list clause))))
(if (ana node2 (eq clause (support node?)))

(remove-truth node?)))))

(deftail satisfier (clist)
(cond ((null clist) nil)

((true-term? (car clist))
(caar chast))
(t (satisfier (cdr clhat)))))

All nodes whose support status has changed (the node's previous support was in validated) arc passed

to the premise controller which determines if' die premises should bc changed based on die current support

structure.

(defun removed-check (
(mapc 'node-deduce-check *removed-list*)
(funcal 1 premise-checker* removed-lst*)
(mapc *(lambda (nods)

(cond ((unknown? node)
(mapc '(lambda (noticer) (add? noticer onoticerso))

(unknown-noticers node)))))
Oremoved- I t*)

(defun node-deduce-check (node)
(cond ((unknown? node)

(node-check-? node 'true (pot-clauses node))
(node-check-?2 node 'false (neg-clauses node)))))

(deftall node-check-? (node value clauses)
(if clauses

(let ((clause (car clauses)))
(if (- I (past clause))

(deduce node value clause)
(node-check-2 node value (cdr clauses))))))



6. AP~PENDIX I:THE IMS CODE -28- August 1"0

(deftail run-noticers (
(cond (*contra-list*

(let ((contra (car *contra-llst*)))
(setq *contra-list* (car *contra-llst*))
(if (- 0 (psat contra)) (backtrack contra))
(run-noticers)))

(notlcersO
(lat ((next (car Onotlcerse)))

(setq OnoticersO (cdr Onotlcers*))
(oval next)
(run-noticers)))))

(detun backtrack (contra)
(let ((prams (premises (clause-list contra))))

(let ((prom (cond ((null prems) (break contradiction))
((null (cdr prams)) (car prams))
(t (funcall *premise-selector* prams)))))

(let ((path (support-path prom (clause-list contra)))
(*removed-list* nil))

(invert path contra)
(delf pram *removed-list*) ;the premise controller has already selected this node
(removed-check)))))

(defmacro premises (clist)
(merge (premises2 .clist) nil))

(defun premises2 (clist)
(if clist

(if (true-term? (car chast))
(premises (cdr clist))
(if (premise? (caar clist))

(cons (caar clist) (premises (cdr clist)))
(nconc (premises (clause-list (support (caar clist))))

(premises (cdr clist)))))))

(defun refute (term)
(let (((node .value) term))
(if (unknown? node)

(let ((*removed-llst* nil)
(OnoticersO nil)
(*contra-list* nil))

(set-truth node value)
(let ((path (support-path node (clause-list (car *contra-llst*)))))
(it path

(invert path (car *contra-llst*))
(remove-truth node))

(removed-check)
(run-noticers))

(if (unknown? node) nil t))
(print '(warning -- refutation attempted on known truth value)))))

The following is a uscful utility in choosing premises for retraction

(defun user-choice (assums)
(push-query '((there is a conflict between)

,S(mapcar '(lambda (node)
(cons '(.(assertion node)

assumed to be
.(truth node))

assums))) nd)

(print '(which assumption should be retracted?))
(anawer (read)))
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A support path is a list of nodes such that for any two sequential nodes the latter node is in the
support clause for the lotrer. 'he function support-path is used to ind a support path from a contradiction to
a premise. (support-path node clist) returns a support path such that the first node in the path is in clist and

the path ends with node.

(deftail support-path (node c-list)
(cond ((null c-list) nil)

((true-term? (car c-list))
(support-path node (cdr c-list)))

(t (let ((node2 (caer c-list)))
(cond ((eq node node2)

(list node))
((premise? node2)
(support-path node (cdr c-list)))
(t (let ((path (support-path node (clause-list (support node2)))))

(if path
(cons node2 path)
(support-path node (cdr c-list))))))))))

(deftail invert (path contra)
(if path

(let ((node (car path)))
(let ((path2 (circular-path node contra)))

(if path2
(let ((node2 (car path2)))

(let ((contra2 (add-2 (resolution (path-resolution path2)
(clause-list contra)
node2))))

(invert path contra2)))
(let ((next-contra (support node))

(value (truth node)))
(remove-truth node)
(deduce node (opposite value) contra)
(invert (cdr path) next-contra)))))))

(defun circular-path (node contra)
(support-path node (remove-node node (clause-list contra))))

(defun path-resolution (path)
(path-resolution2 (cdr path) (clause-list (support (car path)))))

(deftail path-resolution2 (rest-path clist)
(if (cdr rest-path)

(path-resolution2 (cdr rest-path)
(resolution c1st

(clause-list (support (car rest-path)))
(car rest-path)))

clist))

(defun resolution (clisti clst2 node)

(append (remove-node node c1isti)
(remove-node node c1istZ)))

(deftal remove-node (node clist)
(if (eq (caar c1ist) node)

(cdr c1hst)

(cons (car clist) (remove-node node (cdr c11st)))))

t ______I
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6.3. The Premise Controller

'hce premise controller is best understood in terms of the invarians it enforces. First a node with a

default truth value (one that is in some prcmise priority class) can have its default %aluc as a deduced value

(instead of as a premise) only if all the premises underlying that deduction are in a stronger class. Such a node

can take on the opposite of its default value only when the premises underlying that value are in stronger

priority classes or when the node has been chosen explicitly by the user for retraction when it conflicts with

other premises in its own class.

(declare (special "min-cert* *max-cert*))

(defun prmcon-init (minc maxc)
(tms-init 'prmcon-selector 'prucon-checker)
(setq *min-cert minfc)
(setq *max-cart maxc))

(defiacro default (node)
'(cdr (virt-assq 'default (external-properties .node))))

(defmacro default-certainty (node)
'(cdr (virt-assq 'default-certainty (external-properties *node))))

(defun certainty (node)
(cond ((unknown? node) 0)

((premise? node)
(default-certainty node))
(t (min-cert (support nods)))))

(defmacro min-cart (clause)
'(min-cert2 max-carto (clause-list .clause)))

(defun mmn-cart2 (min-cert clist)
(cond ((null clist) min-cert)

((not (false-term? (car clist)))
(min-curt2 min-cart (cdr clist)))
(t (min-cert2 (min min-cert (certainty (caar clist)))

(cdr c1hst)))))

(defun set-default (node value certainty)
(if (not (numberp certainty)) (break (non numeric certainty)))
(setf (default node) value)
(setf (default-certainty node) certainty)
(premise-check node))

(defun remove-default (node)
(setf (default node) nil)
(if (premise? node) (retract-premise node)))

(defun prmcon-chocker (nodes)
(mapc 'premise-check nodes))

(defun premise-check (node)
(itf (default node)

(cond ((or (unknown? node)
(not (. (default-certainty node)

(certainty node))))
(make-premise node (default node))))))

I
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(defun prmncon-selector (premises)
(let ((assuns (least-cert-premises premises)))
(if (cdr assums)

(user-choice assums)
(car a$SUN$))))

(defun least-cart-premises (promises)
(least-cert-2 (list (car premises))

(default-certainty (car premises))
(cdr premises)))

(defun least-cert-2 (so-far min-cert rest)
(if (null rest)

so-far
(lot ((node (car rest)))

(let ((cart (default-certainty node)))
(cond ((< cart min-cart)

(least-cort-2 (list node) cart (cdr rest)))
((- cart min-cert)
(least-cert-2 (cons node so-far) min-cert (cdr rest)))
(t (least-cort-2 so-far min-cert (cdr rest))))))))

--------- ---- - ---
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7. APPENDIX ii: UTILITY PROCEDURES

Most of the basic concepts behind the utilities described here have been developed by various
people other than the author and many of them are documented in the I.ISP MACHINE MANUAL

[Wcinreb & Moon 781.

7.1. Basic Macros

7.1.1 BACKQUOTI'E

The backquote feature provides a form of quote which replaces items preceded by a comma with

their %alue. lhe following are some examples of the use of backquote:

"(foo a .(+ 1 2)) evaluates to: (too a 3)

'(foo .(list a 'b) (list 'a 'b)) evaluates to: (too (a b) (list 'a 'b))

Items in the interior of backquoted expressions which are preceded by ,@ have their values

exploded into the top level list structure. An example of the use of this feature is as follows:

'(foo .@(list 'a 'b) ,(list 'a 'b) (list 'a 'b))

evaluates to:

(foo a b (a b) (list 'a 'b))

7.1.2 I)EFMACRO

This form is used to define macros. A macro definition has a similar syntax to a function definition.

When a form whose car is a macro is evaluated the macro definition is used to generate a new form whose
value is the value returned for the original form. The arguments to the macro are bound to the forms in the
argument positions rather than their values as is done for functions. An example of a macro definition is given
below:

(defmacro first-part (i)
'(cear ,x))

Using this definition (first-part a) macro expands to: (caar a) and so (fist-part a) has the same value
as: (caar a). A macro is often used instead of a trivial function definition because it is expanded within the

compiler and results in more efficient compiled code.
It is sometimes convenient to allow the bound variable list of a macro to be an arbitrary list structure

rather than a simple lisL In this case atoms in the bound variable list (or bound variable patern. since it need
not be a simple list) are bound to corresponding parts of the expression using the macro. For example the

new MACISP form of do could have been defined as a macro along the following lines:

~imljj ... ", kk .
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(defmacro do (variable-bindings (end-test . end-body) . do-body)

'he bound Nariable list may also be a single atom, in which case that atom is bound to the entire list

of "arguments" to the macro.

7.1.3 IFMAC

detmac is identical to defun with the exception that a macro is created which the compiler can use to

open code the function during the compilation of other functions. 'Ihis is used purely for reasons of

efficiency. The open coding is useful in getting the compiler (and other optimization macros such as deftail)

to perform optimizations which would not otherwise be done. No function defined via definac can be

recursive howeser since this would lead to infinite expansion during open coding.

7.1.4 IF

(if a b c) macro expands to: (cond (a h) (t c)).

(if a b) expands to: (cond (a b)).

7.1.5 LEF

The let feature allows structured lambda binding. An example follows:

(let ((a 1)
(b 2))
(+ a b))

is equivalent to:

((lambda (a b) (+ a b)) 1 2)

The let macro allows the the bindee of a binding pair to be an arbitrary list structure whose parts are

bound to the corresponding parts of the value being bound. This is convenient for dealing with functions

which conceptually return more than one value.

7.2. Side Effect Macros

7.2.1 SETF

The setf macro gives a general method for side effecting data structures. The following equivalences

give some examples of its use:

(setf a b) is equivalent to: (aetq a b)
(setr (get a b) c) (putprop a c b)
(setf (car a) b) (rplaca a b)
(setf (cdr a) b) (rplacd a b)
(setf (cond (a b) (c d))"@) (cond (a (setf b e)) (c (sets d i)))
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The serf macro macroexpands its first argument. 'Ihus it is possible to use setf in conjunction with

macros as is demonstrated below.

(defmacro foo (x)
'(caar 'x))

(setf (foo a) b) macroexpands to (rplaca (car a) b)

7.2.2 iEFSII)MAC

defsidmac is just like defmacro except that it is used to define macros which side effect their last

argument and treats that argument position specially. Specifically it defines a macro which will embed the

side effect in conditionals as does setf. To see how this works consider the following definition of addf.

(defsidmac addf (x list)

'(setf ,list (cons ,x ,list)))

(addf x b) is equivalent to: (setf b (cons a b))

but

(addf x (if a b c)) is equivalent to: (if a (addf x b) (addf x C))

While it may seem obscure to write code which side effects conditional expressions, the ability to do

so can be importaut when data structure macros expand to conditionals. In such situations it is sometimes

convenient to be able to side effect applications of these macros.

7.2.3 INCREMENT

increment is defined by:

(defsidmac increment (x)
'(set? ,x (1+ ,X)))

7.2.4 ADDF

addf is defined by:

(defstdmac addf (x list)
'(setf .list (cons .K lst)))

7.2.5 DELF

dell is defined as:

(defsidmac del? (x list)
'(setf list (delete ,x ,list)))
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7.2.6 VI ItI'-A SSOC

This function is like assoc except that it is always guaranteed to return a conls whose car is its first

argument. Furthermore if there was no such cons originally in the association list then the cons returned is

autonmatically addf'd to the alist. The following is a typical use of virt-assoc

(detmacro foo (x)
*(car x~))

(defmacro other-properties (x)
(cdr .x))

(defmacro bar (x)
(cdr (virt-assoc *bar (other-properties ,x))))

(setf a (cons nil nil))

(setf (bar a) 'bar-val)

a now is (nil . ((bar . bar-val)))
(bar a) is now bar-val

7.2.7 VIRT-ASSQ

i'irI-assq is to assq as virt-assoc is to assoc.

7.3. Definition Macros

7.3.1 I)EFSTRUCT

The defstruct feature is used to define a typc of structured object. A defstruct definition creates a set

of macros. One of these macros is used to create objects of the defined type. ibe others are used to access the

parts of that object. Consider the following example:

(defstruct (ship) x-pos y-pos (mass 200))

'l'his defines four macros: make-ship, x-pos, y-pos, and mass. Trhe make-ship mnacro creates a ship

with its mass set to a default value of 200. 'M'e following dialogue illustrates a use of these macros:

(SETQ HERO (MAKE-SHIP))
(nil nil 200)

(MASS HERO)
200

(SETF (X-POS HERO) 10)
10

(X-POS HERO)
10

ALL--
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7.3.2 DEFI'AIL

When deftail is used instead of defun in a function definition tail recursion optimization is

performed on the body of that definition. This feature actually does more than simple tail recursion

optimization in that simple accumulations (functions which generate sums, products, or lists recursively) are

also converted to iterative forms.

7.3.3 DEFARB

dctarb is identical to defun except that it allows the bound variable list to be an arbitrary list

expression. The atoms in this expression are bound to the corresponding parts of the list of values to which

tie defined is applied. The most common use of defarb is to have the bound %ariable patiern be a single atom

in which case that atom is bound to the list of arguments to the function. A function so defined can take an

arbitrary number of arguments.

7.4. Query Functions

7.4.1 PUSH-QUERY

This function takes a "query", prints a "query list", and pushes information on an internal data

structure which is used to "answer" the query. A query is a cons of an "initia" query" and a "query-list". The

initial query can be any s-expression and is printed as the first part of the printed query. 'he query list is an

association list of s-expressions with arbitrary objects. The printed query consists of tie initial query followed

by an enumeration of the s-expressions in the query list. 1he following example should be useful.

(push-query (cons '(the items of interest are)
(list (cons 'itemi 'answerl)

(cons 'item2 'answer2)
(cons 'item3 'answer3))))

which results in the following being printed:

((the items of interest are)
(1 iteml)
(2 Item2)
(3 item3))

7.4.2 ANSWER

'Ihis function is only meaningful after a query has been pushed. It takes a single numeric argument

and returns the datum that was associated with the corresponding s-expression in the query enumeration. For

example assumi,|g the previous query pushed was the above query, the answer would yield the following

results:

• --.-.m ..i. , . . . t~ A"-
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(answer 1) -> answerl
(answer 2) - answer2
(answer 3) -> answer3

7.4.3 POP-QUERY

'This function pops the query stack such that further calls to answer are computed in the context of

an earlier query.

7.5. Mapping Functions

All of the standard MAClISP mapping functions have been converted to macros which
macrocxpand to iterative fonns. This allows one to map macros as well as normal functions. These macros

also provide a great deal of optimization not normally supplied by the compiler. For example embedded

mappings, such as (niapc 'foo (mapcar 'bar I)), macro expand into a single iterative form. Some non-standard

mapping functions and special forms relating to mapping functions have also been defined.

7.5.1 CIRCULAR-LIST

This function of one argument returns an infinite, self referential list of that argument. 'Iis is used

to create list arguments to mapping functions. For example a list of symbols could be set to nil with the

following expression:

(mape 'set symbols (circular-list nil))

The mapping macros recognize circular-list arguments and produce iterative forms which avoid actually

creating the infinite list.

7.5.2 INTEGERS-BETWEEN

This function of two numeric arguments returns a list of all the integers between those arguments

inclusive. Illus one could convert an array to a list with the following code:

(mapcar 'ar-1 (circular-list array)
(integers-between 0 (1- (car (dimension array)))))

he mapping functions recognize integers-between forms and avoid actually creating such a list. Also because

nested mappings are merged, the above form could be given as an argument to a second mapping function

and the resulting code would be just as efficient as a single iteration over the elements of the array.

'lThe second argument to integers-between can be the atom W. 'Ibis is recognized by the mapping

functions which then treat the integers-between argument as an infinite list. However integers-between

actually only creates a finite list when given inf as its second argument.

. ....................
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7.5.3 FMAPCAR

This is the same as mapcar except that all null elements arc removed from the list returned. I'hlus:

(fmapcar 'foo 11)

is equivalent to:

(mapcan '(lambda (x) (list (foo x))) 11)

7.5.4 FORALL

'his could have been defined as:

(defun forall (list prod)
(or (null list)

(and (funcall prod (car list))
(torall (cdr list) prod))))

7.5.5 EXISTS

*This could have been defined as

(defun exists (list prod)
(and list

(or (funcall prod (car list))
(exists (cdr list) prod))))

7.5.6 ACCUM

['his could have been defined as:

(defun accum (fun list tomp-accum)
(it (null list)

temp-accum
(accum fun

(Cdr list)
(funcall fun (car list) tOMP-accum))))

7.5.7 LSUM, LPROD

These could have been defined as:

(defun lsun (list)
(accum 'sum list 0))

(detun lprod (list)
(accum 'product list 1))
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7.6. Miscellaneous Functions

7.6.1 MERGE

'Ibis is defined as:

(deftail merge (11 12)
(cond ((null 11) 12)

((member (car 11) 12) (merge (cdr 11) 12))
(t (merge (cdr 11) (cons (car 11) 12)))

7.6.2 HlASH

This is a hashing function on s expressions.
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8. FUNCTION INDEX

->istance........................................ 22 instantiate ................................................ 21

accum............................................. 38 integers-between........................................ 37
add-2 ........................................... 25 invert ..................................................... 29

add-clause ....................................... 25 lcast-cert-2 ............................................... 31

addf............................................... 34 least-cert-premises....................................... 31

and-instance .................................... 22 let ......................................................... 33

answer ............................................ 36 fikely-instance ........................................... 22

assert ........................................... 21 Iprod...................................................... 38

assume .......................................... 21 Isumn...................................................... 38
backquote........................................ 32 make-clause.............................................. 25
backtrack......................................... 28 makc-premisc ........................................... 26
certainty........................................ 30 mergec..................................................... 39
circular-list....................................... 37 min-cert ........................................... ....... 30

circular-path ..................................... 29 min-cert2................................................. 30
clause-list......................................... 25 node-check-2 ............................................ 27
clauses ............................................ 24 node-deduce-check ..................................... 27
comp-psat........................................ 25 not-instance.............................................. 22

deduce .......................................... 26 noticers................................................... 24

deduce-check.................................... 26 op-clauses ................................................ 24

defarb .......................................... 36 op-tcrm................................................... 24

default ........................................... 30 opposite .................................................. 24

default-certainty................................. 30 or-instance............................................... 22

defmac ........................................... 33 path-resolution .......................................... 29
defiiacto......................................... 32 path-resolution2......................................... 29

delfsidmac ........................................ 34 pop-query................................................ 37
dcfstnict.......................................... 35 premise-check ........................................... 30
deftail........................................... 36 premise?9 ....................... . . . . . . . . . . . . . . . . . . . . . . . . . . 24

deif .............................................. 34 premises.................................................. 28
exists ............................................ 38 prcmises2 ................................................ 28

false-termn ........................................ 24 prmcon-checker ......................................... 30
fmapcar........................................... 38 prmcon-mnit .............................................. 30

forall ............................................. 38 pnncon-selector ......................................... 31
hash ............................................ 39 psat ....................................................... 25

if ................................................ 33 push-query............................................... 36

in-funs ........................................... 21 referenced-node......................................... 21

increment ........................................ 34 refute................................................... 28



8. FUNCTION INDEX' -41- August 1980

index.............................................. 21 remove-2................................................. 27

remove-default.................................. 30 sctf........................................................ 33

remove-node..................................... 29 support-path............................................. 29

remOve-truth..................................... 27 tins-init................................................... 24

rcmnovcd-check.................................. 27........................................................... 24

resolution ........................................ 29 try-to-show............................................... 23

retract............................................. 21 unknown-term........................................... 26

rccract-check..................................... 27 unknown-tcrm'.......................................... 24

retract-premise .................................. 27 unknown? ................................................ 24

run-noticers...................................... 28 user-choice............................................... 28

satisfier ........................................... 27 very-likely-instance ..................................... 22

set-2 ............................................. 26 Virt-assoc................................................. 35

ect-default........................................ 30 virt-assq .................................................. 35

set-truth ........................................ 26 why ....................................................... 23



9. REFERENCEkS .42- August 1960

9. REFERENCES

[Davis & Putnam 601 Martin Davis, Hilary Putnam
"A Computing Procedure for Quantification Theory."
Journal of the Association for Computing Machinery, Vol. 7, pp. 201-215, 1960

ide KMcer CL al. 771 Johan de Klccr, Jon D~oyle, Guy Steele, Gerald Sussman.
E'xplicit Controle QfReasonin.

M [I' Al I Lab Memo 427 (Cambridge June 1977).

Ide KMeer & Sussman 781 Johan dc K leer, Gerald Jay Sussmnan.
Propogatior ipfConstraint Applie to CircuiSthcsLbis
MIFAI Laib Memo 485 (Cambrige, September 1978).

[D~oyle 771 Jon Doyle.
Truthi Maintenance Systems for Problem SolvinL

M.S. thesis (May 1977). Also MIT Al lab 'lcchnical Report 419 (Cambridge, September 1978).

jl~oyle 781 Jon Doyle.

A Glimpse gof Truth Maintenance.
MIT Al Lab Memo 461a (Cambridge 1978).

IFikes 751 Richard E Fikes
"A Deductive Retrieval Mechanism for State Descriptor Models"
SRI Al'Technical Note 106

fFikes 71] Richard E. Fikcs, N. J. Nilsson.

"S'1'RIPS: a New Approach to the Application of Theorem Proving to Problem Solving"

Artificial Intelligence 2, 1971, pp. 189-208.I

[Hewitt 721 Carl Hewitt
Description nd lljgortct Analysis Qf PLANNER: a j~ngugg fo Proving Thorms Ad

Maniuinm Model inn R~kgL
M IT I'echnical Report 258, 1972.

Ilondon 781 Philip E. London.
Depnency~ Ntworks aa gi Represntaion far Moidling Gnral Problem SoIYm
Ph.D). thesis U. Maryland, D~ept. of Computer Science l'echnical Report 698 (College Park, Maryland,

September 1978).



9. REFERENCFS .43- August 1980

[McAllester 801 I)avid A. McAilester

The Use of lalit in Deduction and Knowlcdge Rco'escntation

M Ir AI Lab "lechnical Report 520, February 1980.

(McDcnnott 741 Drew Mcl)crmott, Gerlad J. Sussman.

The CONNIVFR Reference Manual

MIl AI Lab Memo 259a. 1974.

[McDermott 781 Drew McDcrmott, Jon Doyle

Non-monotonic Ligk I
MIT AI ILab Memo 486, 1978, Also to appear in Artificial Intelligence 13.

[Moore 751 Robert C. Moore

Reasoning From Incomplete Knowled , in a Proccdural I)eduction SY=tm.

MIT Al Lab Tcchnical Report 347 (Cambridge )ecember 1975).

[Nelson & Oppen 791 Greg Nelson, )erck C. Oppen

"Simplification by Cooperating Decision Procedures"

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 2, October 1979, Pages 245-257.

[Reiter 791 Raymond Reiter

A ILo~i i[ Default Reasoning.
University of British Columbia, Department of Computer Science. Technical Report 79-8.

[Shrobe 791 Howard E. Shrobe

Dependency Dirwed Reasoning for Complex Program Understandin2

MIT AI Lab Technical Report 405 (Cambridge June 1979).

[Stallman & Sussman 77] Richard M. Stallman, Gerald Jay Sussman.
"Forward Reasoning and Dependency Directed Backtracking in a System for Computer-Aided Circuit

Analysis."

Artificial Intelligence 9 (1977), 135-196.

[Steele & Sussman 781 Guy Lewis Steele Jr., Gerald Jay Sussman.

Constraints.
MIT Al ILab Memo 502 (Cambridge, May 1978). Also Proc. API.79 Conference (Rochester, May 1979).



9. RFFIERiNCFS .44- August 198

(Sussman 7 11 Gerald J. Sussman.Tlerry Winograd, E. Charniak.

Micr Plaing Refercr ManalI
M IT AI Lab Memo 203a, 1971

[Sussman 771 Gerald J. Sussman.
'Electrical Decsign: a Problem for Artificial Intelligence Research"

in IJCAI-77, pp. 894-900, 1977.

[Waltz 721 David L Waltz.

Ocncritting Semntic Decscription~ from lDrawin ps With Shadow .
MIT Al TIcchnical Report 271, November 1972.

Also in Ihc Psvchology i~fCompte Vjiio, Patrick H. Winston (ed.). McGraw-Hill, 1975.

fWeinreb & Moon 791 Daniel Weinreb, David Moon.

U.J Machne Manual.
M IIArtificial Intelligince Laboratory, 1979

I www-w




